Crystal Growth and Crystallization
A crystal is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. Crystal growth is a major stage of a crystallization process, and consists in the addition of new atoms, ions, or polymer strings into the characteristic arrangement of a crystalline Bravais lattice. The growth typically follows an initial stage of either homogeneous or heterogeneous (surface catalyzed) nucleation, unless a "seed" crystal, purposely added to start the growth, was already present. The action of crystal growth yields a crystalline solid whose atoms or molecules are typically close packed, with fixed positions in space relative to each other. The crystalline state of matter is characterized by a distinct structural rigidity and very high resistance to deformation (i.e. changes of shape and/or volume). Most crystalline solids have high values both of Young's modulus and of the shear modulus of elasticity. This contrasts with most liquids or fluids, which have a low shear modulus, and typically exhibit the capacity for macroscopic viscous flow.
- Crystal structure and Growth
- Nucleation
- Thermodynamic view
- Cooling crystallization and Cooling crystallizers
- Evaporative crystallization and Evaporative crystallizers
- DTB crystallizer
- Inorganic Crystal Studies
- Powder Structure Determination
Related Conference of Crystal Growth and Crystallization
11th International Conference and Expo on Ceramics and Composite Materials
23rd International Conference and Exhibition on Materials Science and Chemistry
Crystal Growth and Crystallization Conference Speakers
Recommended Sessions
Related Journals
Are you interested in
- Additive Manufacturing and 3D Printing - Material science 2025 (UK)
- Additive Manufacturing of Ceramics and Composites - Ceramics 2025 (UK)
- Advanced Characterization Techniques - Ceramics 2025 (UK)
- Advanced Characterization Techniques for Materials - Material science 2025 (UK)
- Advances in Nanomaterials and Nanotechnology - Material science 2025 (UK)
- Bioceramics and Biomedical Applications - Ceramics 2025 (UK)
- Biomaterials and Tissue Engineering - Material science 2025 (UK)
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Ceramic Armour and Defence Applications - Ceramics 2025 (UK)
- Ceramic Coatings and Thin Films - Ceramics 2025 (UK)
- Ceramic Matrix Composites (CMCs) - Ceramics 2025 (UK)
- Ceramic Processing Techniques - Ceramics 2025 (UK)
- Ceramic Recycling and Waste Reduction - Ceramics 2025 (UK)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Composite Material Design and Development - Ceramics 2025 (UK)
- Computational Materials Science and Modeling - Material science 2025 (UK)
- Electrical and Electronic Ceramics - Ceramics 2025 (UK)
- Emerging Functional Materials for Electronics and Photonics - Material science 2025 (UK)
- Energy and Environmental Applications - Ceramics 2025 (UK)
- Environmental Sensors Using Ceramics - Ceramics 2025 (UK)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Functional Ceramics - Ceramics 2025 (UK)
- Glass Ceramics and Applications - Ceramics 2025 (UK)
- Green Synthesis and Processing of Materials - Material science 2025 (UK)
- High-Performance Structural Materials - Ceramics 2025 (UK)
- High-Temperature Superconductors - Ceramics 2025 (UK)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Lightweight Composites for Aerospace and Automotive - Ceramics 2025 (UK)
- Materials for Advanced Coatings and Surface Engineering - Material science 2025 (UK)
- Materials for Aerospace and Automotive Applications - Material science 2025 (UK)
- Materials for Biomedical Applications - Material science 2025 (UK)
- Materials for Energy and Environmental Sustainability - Material science 2025 (UK)
- Materials for Nanoelectronics and Quantum Technologies - Material science 2025 (UK)
- Materials for Optoelectronic Devices - Material science 2025 (UK)
- Materials for Renewable Energy Technologies - Material science 2025 (UK)
- Materials for Sensing and Actuation - Material science 2025 (UK)
- Materials for Structural Applications and Lightweight Design - Material science 2025 (UK)
- Materials for Sustainable Construction and Infrastructure Development - Material science 2025 (UK)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanostructured Ceramics - Ceramics 2025 (UK)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Novel Materials for Energy Storage and Conversion - Material science 2025 (UK)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Recycling and Sustainability in Ceramics - Ceramics 2025 (UK)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Smart Materials and Intelligent Systems - Material science 2025 (UK)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Sustainable Materials for a Greener Future - Material science 2025 (UK)
- Tissue Engineering - Materials Chemistry 2025 (France)
- Wearable and Flexible Ceramics - Ceramics 2025 (UK)